小型定置網漁場に出現した魚の行動特性について

河岸 賢・宗清 正廣・西岡 純・飯塚 覚

Characteristics of Fish Behaviour in the Masu-ami (a set net) Fishing Ground

Masaru Kawagishi, Masahiro Munekiyo, Jun Nishioka and Satoshi Iizuka

Synopsis

The investigation of the daily rhythm of fish behaviour, relationship between movement and stream, and the selective behaviour in both mouth of the net was conducted in harvesting two traps of the net every four hours in the Masu-ami fishing ground of Kunitama Bay in July, September, October and November 1986.

The daily rhythms of fish behaviour were classified four types: diurnal-twilight rhythm type, twilight rhythm type, nocturnal-twilight rhythm type and changeable type.

Under the southward current, Paralichthys olivaceus showed upstream movements, though Therapon oxyrhynchus and Leisognathus nuchalis showed downstream movements.

Under nocturnal condition, Tribolodon hakonensis, Konosirus punctatus and Ditrema temmincki showed active upstream movements.

Four fishes had mouth selectivity, K. punctatus, Sphyraena pinguis and Stephanolepis cincta entered into the net passing north mouth. On the other hand, Lateslabrax japonicus entered into the net passing through south mouth.

著者らは、1986年に設置した枠網を用いて、魚の行動特性に関する調査をおこない、魚の活動日周期性、向流行動、および入網時の端口の選択性について、若干の知見を得たので報告する。

報告にあたり、調査に協力していただけた、漁業協同組合がしごと研究会各位に深謝の意を表する。

資料と方法

調査に用いた枠網は、京都府立海洋センターが、1986年6月25日から11月30日まで、久美浜湾の水路口付近に設置したもので、南北同じ大きさの2つのつぼ（魚捕部）と、南北2つの端口を有するものである（Fig. 2, 3）。

魚の行動特性調査は、7月24日～26日、9月24日～27日、10月16日～18日、および11月10日～13日の合計4回実施した。各調査時には、0時、4時、8時、12時、16時、20時と、4時間ごとに南北2つのつぼを揚網し、時刻別、つぼ別、魚種別の入網尾数を調査した。また、9月、10月、11月の調査時には、魚種による端口の選択性を調べるため、南北両端口を交互に開閉した（Fig. 1）。

なお、端口の開閉には、運動場図網と同じ条件の枠網を用いた。

Table 1 に示したように、調査期間中、魚類、体長、甲殻類、甲殻類を含めて44種が出現した。これらの中、比較的入網尾数が多く、かつ入網頻度の高い魚種、漁業的にお見て重要な魚種、および入網尾数が少なく、かつ入網頻度も低いが、月イク指針的にある魚種、に於て日周期性、向流行動、および端口の選択性を検討した。

また、調査時の魚場の流況を把握するために、自記式流速計（鶴見使用型 MTCM-5A型）を北端口付近の水深2.5mに垂下設置し、流流速を10分間隔で測定した（Fig. 3）。なお、測定精度は流速±5cm/secである。

結果と考察

魚の活動日周期性
調査時の入網状況から、魚種別の魚種別の魚種別の入網尾数を測定した。また、9月、10月、11月の調査時には、魚種による端口の選択性を調べるため、南北両端口を交互に開閉した（Fig. 1）。

なお、端口の開閉には、運動場図網と同じ条件の枠網を用いた。

Table 1 に示したように、調査期間中、魚類、体長、甲殻類、甲殻類を含めて44種が出現した。これらの中、比較的入網尾数が多く、かつ入網頻度の高い魚種、漁業的にお見て重要な魚種、および入網尾数が少なく、かつ入網頻度も低いが、月イク指針的にある魚種、に於て日周期性、向流行動、および端口の選択性を検討した。

また、調査時の魚場の流況を把握するために、自記式流速計（鶴見使用型 MTCM-5A型）を北端口付近の水深2.5mに垂下設置し、流流速を10分間隔で測定した（Fig. 3）。なお、測定精度は流速±5cm/secである。
Table 1. Catch compositions of fishes caught and range of the body length.

<table>
<thead>
<tr>
<th>Species</th>
<th>Duration</th>
<th>24~26 July</th>
<th>24~27 Sept.</th>
<th>16~18 Oct.</th>
<th>10~13 Nov.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Catch in number</td>
<td>Range of body length</td>
<td>Catch in number</td>
<td>Range of body length</td>
<td>Catch in number</td>
</tr>
<tr>
<td>1. Sepia (platysepia) exculenta HOYLE</td>
<td>8</td>
<td>3~60</td>
<td>9.0~16.5</td>
<td>7</td>
<td>11.5~19.5</td>
</tr>
<tr>
<td>2. Loligo budo WAKIYA et M. ISHIKAWA</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3. Septiotheith lessoniana LESSON</td>
<td>0</td>
<td>60</td>
<td>8</td>
<td>38</td>
<td>7</td>
</tr>
<tr>
<td>4. Peraeus japonicus BATE</td>
<td>2</td>
<td>3~6</td>
<td>11.5~19.5</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5. Unknown Decapoda</td>
<td>2</td>
<td>6</td>
<td>1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>6. Portunus trituberculatus (MIERS)</td>
<td>0</td>
<td>8</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>7. Portunus pelagicus (LINNÉ)</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>8. Charybdis japonica A. MILNE-EDWARDS</td>
<td>7</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>9. Lamnida sp.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>10. Rajida sp.</td>
<td>1</td>
<td>7</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>11. Konusimus pacificus (TEMMINCK et SCHLEGEL)</td>
<td>169</td>
<td>8</td>
<td>15.0~25.5</td>
<td>51</td>
<td>15</td>
</tr>
<tr>
<td>12. Engraulis japonica (HOUTTUYN)</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>13. Saurida sp.</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>14. Tribolodon hakonensis (GÜNTHER)</td>
<td>156</td>
<td>8</td>
<td>20.0~36.0</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>15. Conger myriaster (BREVOORT)</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>16. Ophichthidae sp.</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>17. Diplogaphus pinguus GÜNTHER</td>
<td>0</td>
<td>14</td>
<td>6</td>
<td>20.0~23.5</td>
<td>0</td>
</tr>
<tr>
<td>18. Trachurus japonicus (TEMMINCK et SCHLEGEL)</td>
<td>7</td>
<td>2</td>
<td>14.0~20.0</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>19. Seriola quinquergadiata (TEMMINCK et SCHLEGEL)</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>20. Leiognathus nuchalis (TEMMINCK et SCHLEGEL)</td>
<td>200</td>
<td>9</td>
<td>7.5~13.0</td>
<td>28</td>
<td>11</td>
</tr>
<tr>
<td>21. Oplegnathus fasciatus (TEMMINCK et SCHLEGEL)</td>
<td>0</td>
<td>13</td>
<td>6</td>
<td>10.0~25.0</td>
<td>6</td>
</tr>
<tr>
<td>No.</td>
<td>Species Name</td>
<td>Number</td>
<td>Length (cm)</td>
<td>Number</td>
<td>Length (cm)</td>
</tr>
<tr>
<td>-----</td>
<td>------------------------------------</td>
<td>--------</td>
<td>-------------</td>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>22</td>
<td>Apogon semilineatus Nippon Tsudai (Temminck et Schlegel)</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>23</td>
<td>Lateolabrax japonicus (Guvier) Suiki (Temminck et Schlegel)</td>
<td>3</td>
<td>17</td>
<td>6</td>
<td>14.0-23.5</td>
</tr>
<tr>
<td>24</td>
<td>Epinephelus akeara (Temminck et Schlegel) Kiga Hata</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>25</td>
<td>Argyrosomus argentatus (Houttuyn) Ishi Mochi</td>
<td>6</td>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>26</td>
<td>Sillago sihama (Forskal) Kos</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>27</td>
<td>Girella punctata Gray Medusa</td>
<td>1</td>
<td>24</td>
<td>10</td>
<td>15.5-23.5</td>
</tr>
<tr>
<td>28</td>
<td>Therapon oxyrinchus (Temminck et Schlegel) Sima Saya</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>29</td>
<td>Pagrus major (Temminck et Schlegel) Madai</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>30</td>
<td>Acanthopagrus schlegelii (Bleeker) Kurodai</td>
<td>0</td>
<td>26</td>
<td>7</td>
<td>11.5-14.5</td>
</tr>
<tr>
<td>31</td>
<td>Sparus sarba (Temminck et Schlegel) Hedaigai</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>32</td>
<td>Gobina sp. Hase Amago</td>
<td>1</td>
<td>46</td>
<td>9</td>
<td>8.5-19.5</td>
</tr>
<tr>
<td>33</td>
<td>Ditrema temmincki Bleeker Umi Tana Go</td>
<td>0</td>
<td>100</td>
<td>2</td>
<td>10.0-15.0</td>
</tr>
<tr>
<td>34</td>
<td>Holichthyes poecilopterus Kyusei Sen (Temminck et Schlegel)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>35</td>
<td>Siganus fuscescens (Houttuyn) Aiko</td>
<td>0</td>
<td>640</td>
<td>16</td>
<td>7.0-18.5</td>
</tr>
<tr>
<td>36</td>
<td>Stephanolepis cirrhifer (Temminck et Schlegel) Kawa Hagi</td>
<td>0</td>
<td>640</td>
<td>16</td>
<td>7.0-18.5</td>
</tr>
<tr>
<td>37</td>
<td>Rudarius e reverse Jordan et Fowler Ama Hagi</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>38</td>
<td>Navodon modestus (Günther) Uma Sazura Hagi</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>39</td>
<td>Lagoscephalus lunaris spadiceus (Richardson) Yaba Yugoi</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>40</td>
<td>Tetraodontina sp. Toga Amago</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>41</td>
<td>Sebastes schlegeli Hilgendorf Kuroi</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>42</td>
<td>Hypodytes rubripinnis (Temminck et Schlegel) Hako Sato</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>43</td>
<td>Platyschistus indicus (Linne) Kocho</td>
<td>7</td>
<td>5</td>
<td>30.5-44.0</td>
<td>2</td>
</tr>
<tr>
<td>44</td>
<td>Paralichthys olivaceus (Temminck et Schlegel) Hirame</td>
<td>7</td>
<td>4</td>
<td>17.0-31.5</td>
<td>13</td>
</tr>
</tbody>
</table>

*: fishes examined **: total number of the net operated.
小型定置網漁場に出現した魚の行動特性について：河岸，宗清，西岡，飯塚

時間の進行（時間）

<table>
<thead>
<tr>
<th>DURATION</th>
<th>20</th>
<th>0</th>
<th>4</th>
<th>8</th>
<th>12</th>
<th>16</th>
<th>20</th>
<th>0</th>
<th>4</th>
<th>8</th>
<th>12</th>
<th>16</th>
<th>20</th>
</tr>
</thead>
</table>

Fig. 1. Summary of experimental fishing by Masu-ami. ↑ ↓: sun rise time ↓: sun set time, : south mouth opened, : north mouth opened : both mouth opened, open and solid circles indicate non-operated and operated net, respectively.

問題の問題となっている。そこで、井本ら（1952, 1953），平田（1973）
有元ら（1983）の報告，および Fig. 1 に示す各観察時の日出，日没時刻も考慮し，0 時と 4 時を「夜」の揚網
とした。同様に，8 時と 20 時を「マズメ」，12 時と 16 時
を「昼」とした。

また、魚種別の活動周期性は，「夜」，「マズメ」，
「昼」の時刻別に南北両側の入綱尾数を合計し，その
比率から検討した（Fig. 5）。

なお，タン口を交互に開放したときの資料も検討に含め
たが，魚がこの魚場に出現する時刻は，このような漁具
条件により左右されないものとして扱った。

魚種別に，「夜」，「マズメ」，「昼」の時刻別比率を
Fig. 5 に示す。資料が少ない魚種，月によって入網
傾向の異なる魚種もみられるが，入網比率が高い時刻に
注目して，コノリ，ウサギ，コチ，アカマス，アオ
リハは「夜・マズメ」型の活動周期性を示す魚種，
同様に，ジマイサキ，ヘダイは「マズメ」型，カワハギ，
イソダイ，ウミタナゴ，アイゴは「マズメ・昼」型の活
動周期性を示す魚種といえる。また，スズメ，ヒラ
メ，マアシ，ヒイラギは調査ごとに活動周期性が異なる
変動型といえる。

これらの活動周期性は，水槽実験，フィールドと，
調査手法を問わず，生物にとって重要な行動の 1 つである
索餌活動に関連づけて検討される場合が多い。水槽実
験によると，索餌活動の周期性は水温，天候などの外
的環境依存性のものである場合，また，索餌活動の日時
周期性は，産卵期にわたり魚の体内環境の変化によって変
化する場合，さらに，魚種によっては，索餌活動のもっ
となら日周期行動と，それがともにない日周期行動を持

Fig. 2. Masu-ami, set net with two traps,
fishign ground and topography in meter. The broken and the dotted
lines showing the range of south current direction defined and direction
of the base line of the net, respectively.

認められるかどうか検討してみる（Fig. 4）。

魚の入網時刻については，揚網と揚網の間が 4 時間あ
るため，実際の入網時刻と揚網時刻との時間的なずれが

— 64 —
Fig. 3. The Masu-ami used for investigation. ●: position of current meter set
Fig. 4. The 4-hour period profiles of catch and current.
■: catch of north trap, ■■: catch of south trap.
イサキと7月のヒラギには、流れに準ずるような負の向流行動が想定される。シマイサキは事例が一つであるため不明であるが、Fig. 5から、11月のヒラギと7月のヒラギについては、時刻別の入網割合は「夜」、「マズメ」時刻が他の月より相対的に高くなっている。しかし、Fig. 6からはこのとき、暗環境においてこの2魚種の向流行動が活発になる傾向は認められない。したがって、この2魚種がこれらの月に向流行動を示す理由として、前述の井上ほかの現象は考えられず、魚の魚種に対する行動特性等他の要因による行動が、現象的にこのように現われたものとも考えられる。

フィールドにおける魚の向流行動に関しては、産卵海域におけるトビウオ（見島, 1961）や、大型底置網漁場において観察されるサケ（井上ほか, 1987）の場合負の向流行動をとることが報告されている。このようにマグロのように魚の向流行動をみれば、フィールドにおいてもこれがかなり明瞭に認められる場合がある。一方、井上（1985）は定置網内における魚の動きと潮流の関係に関して既述の知見をまとめ、網内の魚の動きと潮流との関係はマグロ、ブリのような大型の回遊性魚類、あるいはその他の大型魚類で示される程度であると述べている。このように定置網などにおける魚の向流行動というように、その現象をマグロ的にとらえることは、困難である場合が多いものと思われる。すなわち、定置網内においては、
小型固定網漁場に出現した魚の行動特性について：河岸・宗清・西岡・飯塚

水槽実験のように完全に流況を把握することが不可能なうえに、魚の対網行動特性、逃れ行動といった他の行動要因が、限られた空間である網内において、向流行動にかかわらず大きな魚の行動に影響を与えるものと考えられる。したがって、今回の調査においても同様の理由で向流行動の観察事例が少なかったものと推察される。

魚の端口の選択性
対象魚種について、北端口が開いている場合と、南端口が開いている場合の全入網尾数（南北両つぼの入網尾数の合計）を比較し、常に一方の端口からの入網が多いと認められるとき、その魚種は端口の選択性を有するとした。

Fig. 1から9月、10月の調査時には、南北両端口の閉鎖時間の一方が、他の方がそれより長くなっている。この場合、時間的に長い方の資料を一部再検し資料数は時間的に短い方に関わって検討した。

南端口を開けたとき、および北端口を開けたときの入網傾向を魚種別にFig. 7に示す。

コノニモ、アカカマス、カワハギは、いずれの調査時においても北端口を開けたときの入網が多く、これらは南端口を選択する魚種といえる。逆に、ズキは南端口を開けたときの入網が多く、本種は南端口を選択していると考えられる。しかし、その他の魚種については、月によりその入網傾向が一定でなく、これらの魚種は端口に対する選択性を持たないものと推察される。

上述の特定の魚種に端口の選択性が認められる理由に
ついて、前述のつぼ別入網傾向も参考にして、以下魚種ごとに検討してみる（Fig. 6）。

Fig. 6 から、コノシロのつぼ別入網傾向は9月を境に変化し、10月、11月には流れの有無にかかわらず、本種は南側のつぼを選択する傾向を示している。また、コノシロの入網は、9月、10月、11月と、北端口からのものが多なくなっている。すなわち、9月以降、枠網漁場におけるコノシロの行動様式は、北端口から運動場を経て南側のつぼに入網するものと思定される。久美浜湾のコノシロは9月頃から外海より湾内に入網する（林・須野、1977）ことが知られている。したがって、このように、コノシロが9月を境に北端口に対する選択性を強めるという現象は、上述のような本種の行動様式の変化に基づくものであろう。

アカガマスは、9月、11月とも、北端口と南側のつぼを選択し、この漁場においてはコノシロ同様に南に曲がる行動が想定される。この魚種の当歳魚は本府において9月に出現し、11月下旬頃から南下回遊するとされている（飯塚、未発表）こと、また、Table 1 の本種の体長範囲から9月、11月の調査時魚は当歳魚であったと考えられることから、9月に認められた本種の選択性は、コノシロ同様に本種が回遊移動の過程で外海から内湾に入網することによってもたらされると推察される。しかし、本種は11月においても9月と同様の選択性を示している。この理由として、篭羅を有する本種（新瀉水試、1985）と、北端口前面に存在する水深2m以浅の礁場との関連による行動も考えられる可能性がある。

本場の場合も前2魚種と同様に、北端口に対する選択性が認められた。本場は篭羅を有し（新瀉水試、1985）、しかもカジキ層場においてはカジキの集団部分に幅がある（佐藤、1984）。Fig. 2において水深3m以下は礁、resp.場となっていることから、この漁場周辺においては北端口前面方向が本場の主である分布域と推察される。したがって、本場の場合は、本種の分布域によって、北端口の選択性が認められたものと考えられる。

一方、スズキは、9月、11月と南端口を選択する傾向が認められる。久美浜湾において、スズキの産卵魚は11月頃から外海へ移動し、未成魚は9月から冬に備えて月を追うごとに湾中央部の深層へ移動する（林・須野、1977）。Table 1 の本種の体長範囲から、11月には産卵魚も含まれていることを考慮すると、9月と11月に認められた南端口の選択性は、未成魚が冬に備えより深い南端口の前面側に遊泳する行動と、産卵魚が産卵のため湾内から外海に移動する北方向に向う行動によるものと推察される。

以上のように、コノシロ、アカガマス、カワハギ、スズキに関してつぼと端口の選択性が認められる理由は、久美浜湾において、これらの魚種の行動が現象的選択性を有するかのごとく発現される位置に枠網が設置されていたためと考えられる。また、魚種によっては入網傾向が変化し、つぼと端口の選択性が認められない理由も同様であると考えられる。

11月のアカガマス、11月のスズキ、9月と10月のカワハギ、9月と11月のアイブ、9月のマアジ、9月のアオリカのように、端口の選択性を示した魚種にも、他の魚種にも、一時的にせよ一方の端口からの入網が他方の端口からの入網より圧倒的に多い場合がある。上記に考察したように、端口の選択性は魚の行動生態と枠網
小型定置網漁場に出現した魚の行動特性について：河岸・宗満・西岡・飯塚

の位置の関係に負うところが大きく、このように端口により、大きく入網傾向が異なる現象は、これらの魚種のいわゆる魚道に枠限が設置されていることを示唆するとも考えられる。すなわち、この漁場が水路口付近に位置し南流が卓越すること、Fig. 2 の複雑な海底地形、および沢内漁業の操業状況等から判断して、北側のつぼ付近からほぼ真北に伸びる水深5mの等深線に沿う形で魚道を想定しても無理はないものと思われる。

要　約

京都府久米川河口付近に設置した枠線を用いて、フィールドにおける魚の活動日周期性、向流行動、端口の選択性について調査し、次の知見を得た。

1）魚の活動日周期性は魚種により次の4タイプに類別された。
 ①「夜・マズメ」型：コノシロ、ウダイ、コチ、アカアマス、アリモリカ
 ②「マズメ」型：シマサイ、ヘダイ
 ③「マズメ・昼」型：カワハギ、インダイ、ウミタナゴ、アイゴ
 ④変動型：スズキ、ヒラメ、マアジ、ヒラギ

2）暗環境下で向流行動が変化する現象は、7月のウダイとコノシロ、11月のウミタナゴに認められた。

3）南流下における正の向流行動は、11月のヒラメに、また、負の向流行動は、シマサイと7月のヒラギに認められた。

4）北端口の選択性が認められた魚種は、コノシロ、アカアマス、カワハギであり、南端口の選択性が認められた魚種はスズキであった。

参考文献

1）井伊 明・井上喜平治・篤雄秀臣・小川良徳・内橋潔、1952。魚類の夜間行動に関する研究(第1報) 日本水産学会第38回記念講演会集, pp. 21-26。
2）井伊 明・井上喜平治・篤雄秀臣・小川良徳・内橋潔、1953。魚類の夜間行動に関する研究(第2報) 日本水産学会第39回記念講演会集, pp. 239-242。
3）平田八郎、1973。魚類、特に金魚 Carassius auratus (Linne) の索餌日間行動に関する研究。興大水資源、22(2) : 1-48。
4）有元正男・井上喜平治、1983。沿岸底延縄漁業における釣獲の日間変化。日本水産、49(8) : 115-1181。
5）新潟県水産試験場、1983。新潟県沿岸域における人工魚礁の総合的考察と効果。PP. 66-192。
6）稲村文三・鈴野高志、1977。若狭湾西部海域におけるスズキの生態一。本誌、I : 29-43。
7）新日本動物園誌(北陸編)，中下巻。
8）児島俊平、1981。魚類の游泳生態に関する研究一。トビウオの行動方向について。日本水産、27(4) : 313-317。
9）児島俊平、1969。ホストウオの回遊と産卵生態に関する研究一、産卵挙げと越冬した魚群の行動について。日本水産、35(3) : 284-288。
10）児島俊平、1969。ホストウオの回遊と産卵生态に関する研究一、産卵挙げにおける魚群の行動について。日本水産、35(11) : 1055-1059。
11）塚川 司、1962。沿岸における小型刺網漁業とその資源一。とびょうお流漁業。日本水産、28(6) : 574-578。
12）井上 実・任為 公・有元正男、1982。河川魚類の明・暗環境における向流行動。日本水産、48(12) : 1697-1701。
13）井上 実・有元正男・任為 公、1984。海産魚類の明・暗環境における向流行動。日本水産、50(1) : 63-69。
14）京都府、1977。昭和50・51年度浅海漁場分析調査報告書、pp. 55-73。
15）井上喜平治・長谷幸夫・渡部俊広・石石享一、1987。定置網の張り建てによる魚群行動の変化。日本水産、53(5) : 695-698。
16）井上 実、1983。漁具と魚の行動、恒星社厚生閣、12. 42-44。
17）飯塚 寛・井上 優・橋本恵司、1984。京都府沿岸のアカアマス漁業とその生態に関する一考察。本誌、8 : 9-13。
18）佐藤修等、1984。水産学シリーズ人工魚礁：32-45。