宮津湾のヒトデ類３種によるトリガイの捕食とトリガイ種苗の放流について

特に内湾に生息するヒトデ類は水産用有効二枚貝を捕食し、時にはその地域の漁業に大きな被害をもたらしたり（相良，1975）、放流直後の二枚貝種苗の減耗を大きくしたりする（高見ほか，1981；有馬，1973）。トリガイ，Fusus muticus，種苗（殻長23－41mm）を放流した場合にも、ヒトデ類などの捕食による減耗の大きいことが推察される（内野ほか，1990）。捕獲サイズにいたるまでの生き残り数を向上させる上で、ヒトデ類によるトリガイ種苗の捕食は大
Table 1. Sampling records of the starfish in four surveys A, B, C and D conducted in 1981–1990.

<table>
<thead>
<tr>
<th>Sampling Date</th>
<th>Sampling gear</th>
<th>Number of Sampling Sites</th>
<th>Number of Sampling</th>
</tr>
</thead>
<tbody>
<tr>
<td>A May 1981</td>
<td>G_1</td>
<td>49</td>
<td>49</td>
</tr>
<tr>
<td>May 1982</td>
<td>G_1</td>
<td>46</td>
<td>46</td>
</tr>
<tr>
<td>B May 1985–March 1986</td>
<td>G_2</td>
<td>12</td>
<td>132</td>
</tr>
<tr>
<td>C Every March and June 1988–1990</td>
<td>G_2</td>
<td>17</td>
<td>102</td>
</tr>
<tr>
<td>D June–September 1990</td>
<td>G_2</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

G_1: Experimental beam trawl; G_2: Beam trawl commercially used

さな課題である。
宮津湾におけるこの調査では、トリガイを捕食するステイ
ヒトデ、Luidia quinaria; ヒトデ、Asterias amurensis; モミジガ
イ、Asteropeten scoparius (内野ほか, 1990) の分布域および
その出現数の季節的な変化を明らかにし、トリガイ種苗
の放流場所と放流時期について検討した。さらに、各ヒト
デが捕食しやすいトリガイの成長を捕食実験などを推測
し、適正な放流サイズを提案した。

材料と方法

ヒトデ類の分布調査 ヒトデ類の採集は調査用氷冷保とト
リガイ桁網（Fig. 1）を使用して、1981年から1990年にか
け、4調査（調査：A、B、C、D）行なわれた（Table 1）。
総調査回数は377回であった。調査ごとの桁網場所は、調
査（A）については Fig. 2 に、調査（B）、（C）は Fig.
3 にそれぞれ示した。調査（D）は宮津湾一円である。調
査（A）、（B）、（C）では、桁網の桁網場所は各調査と
も10分間で、入網した各ヒトデの個体数を計数した。調査
（D）では、入網した各ヒトデの成長を測定した。

捕食試験および調査 1988年3月4日、6月と1990年の5、
6、7、8、9月に、成長16〜62 mm の人工生産したトリガイ

Fig. 2. Map showing sampling sites in the Miyazu Bay in survey A.

Fig. 3. Map showing sampling sites in the Miyazu Bay in surveys B and C.

イ種苗を細砂の入ったコンテナー（長 50 cm、幅 80 cm、深
さ20 cm）および円形ポリタール（内径、高さとも48 cm）
の中に置かせ、その中にスナヒトデ、ヒトデ、モミジガ
イを1尾入れ、4尾収容し捕食の状況を記録した。捕食させ
たトリガイの個体数は一つのコンテナーおよび円形ボリ
タールあたり5〜20個で、各ヒトデに捕食されたトリガイの
個体数は実験開始後3〜12日後に計数した。

飼料を消化管内に飲み込む横単生態をすると消化管内
にトリガイが出現するスナヒトデ（向井, 1981）については、トリガイ桁網に入網した個体のそれぞれ
の消化管内容物を調査し、捕食されていたトリガイの成長
を測定した。
結果

1. ヒトデ類3種のそれぞれの分布域と出現個体数の年および月変化

調査（A）による採集点ごとのヒトデ類の採集個体数をFig. 4に取りまとめた。調査（B）は1985年の5月から翌年の3月にかけ、継続して毎月トリガーフィッシュを実施したものので、ヒトデ類3種の出現状況を月別に示すことができた（Fig. 5）。年毎の出現個体数の変化はTable 2に取りまとめたように、調査（C）の1988年から1990年の毎3月と6月に1回採集点で得た資料から比較検討された。

以下に、これらの結果にもとづき、種別に分布出現状況を述べる。

スナヒトデは、浜地域である湾奥に多く分布する傾向を示しながらも湾全域にわたって分布していた（Fig. 4）。季節的には各月とも入網したが、5月から9月の入網が多く（一隻あたり5.2尾）、7月の入網量が最も多かった（一隻あたり6.7尾）。本種は3種類のヒトデ類の中では一番多く入網したが、入網量の年による変動は3月で比較すると一隻あたり2.6〜9.6尾、6月では変動が大きく5.6〜39.6尾の範囲であった。

ヒトデは、砂地域である宮津湾の湾口域および湾奥西南域に多く分布していた（Fig. 4）。季節的には5月から8月に多く入網し、8月の入網量が最大であった（一隻あたり3.9尾）。3月調査での年毎の入網尾数は一隻あたり0〜1.6尾。6月調査では差はあまりなく1.1〜1.4尾の範囲であった。

モミジガイは、砂地域である宮津湾の北西南に多く分布していた（Fig. 4）。入網量の季節的変化は他の2種と比べて少なく、ほぼ前年にわたって一隻あたり0.7尾から2.4

Fig. 4. Geographic distribution of starfishes in number per haul in May 1981 and 1986.

Fig. 5. Monthly changes in number of starfishes caught by beam trawl commercially used in the Miyazuya Bay from May 1985 to March 1986.

Table 2. Number starfishes caught by experimental beam trawlings in every March and June in 1988-1990.

<table>
<thead>
<tr>
<th>Date</th>
<th>Luidia gaviaria</th>
<th>Asterias amurensis</th>
<th>Astropecten scoparius</th>
</tr>
</thead>
<tbody>
<tr>
<td>28 March 1988</td>
<td>45</td>
<td>0</td>
<td>54</td>
</tr>
<tr>
<td>24 March 1989</td>
<td>164</td>
<td>4</td>
<td>39</td>
</tr>
<tr>
<td>20 March 1990</td>
<td>52</td>
<td>28</td>
<td>70</td>
</tr>
<tr>
<td>14 June 1988</td>
<td>673</td>
<td>18</td>
<td>36</td>
</tr>
<tr>
<td>7 June 1989</td>
<td>178</td>
<td>24</td>
<td>20</td>
</tr>
<tr>
<td>13 June 1990</td>
<td>89</td>
<td>22</td>
<td>18</td>
</tr>
</tbody>
</table>
Fig. 6. Size frequency distributions of starfishes caught by beam trawl commercially used in the Miyazay Bay from June to September in 1990.

Fig. 7. Relationships between arm length of _L. quinaria_ and shell length of _F. mutica_ which were fed and observed in stomach of _L. quinaria._

尾の採集量であった。また、年による入湖尾数の変動は3月調査で1尾あたり2.3〜4.1尾、6月調査で1.1〜2.1尾の範囲であった。

2. 採集した3種のヒトデの腕長組成と捕食されたトリガイの腕長

（1）各ヒトデの腕長組成

調査（D）で宮津湾一帯から採集したスナヒトデ、ヒトデ、モジヒトデの腕長組成をFig. 6に示した。スナヒトデの腕長は3〜18cmの範囲、多かったのは8〜11cmのもので全体の68%を占めた。腕長2〜11cmのヒトデはその84%が5〜8cmの腕長の個体で、3種の中で最も大きな大きさであった。モジヒトデはその90%が腕長4〜6cmの個体で、計測個体数が少ないため腕長範囲はばらつきがなく4〜7cmに限られた。

（2）スナヒトデのトリガイ捕食

調査（C）と（D）で採取したスナヒトデ577個体のうち1.6%の消化管内からトリガイを確認した。月別には3月の3.8%と6月の4.6%が高いため、7月から9月にかけては0〜0.4%と低かった。

今回の全調査（A）〜（D）で貝捕撈に入網したスナヒトデに、その消化内管内から腕長が計測出来る状態のトリガイを捕食したもののが認められた。そのスナヒトデの個体数は9尾で、Fig. 7に示すようにスナヒトデの腕長と食べられていたトリガイの腕長の関係を知ることができた。Fig. 7によると、腕長8.4〜16.3cmのスナヒトデは腕長26〜46mmのトリガイを捕食していたが、腕長が小さいものほど捕食するトリガイの腕長は小さくなる傾向を示した。

捕食実験では、腕長11cmのスナヒトデは腕長38mmのトリガイを一日あたり1個、腕長24mmのものを3個捕食した（Table 3）。

（3）ヒトデのトリガイ捕食

腕長25mm〜60cmのトリガイに対して腕長11cmのヒトデを使った捕食実験では、腕長11cmのヒトデにとっては捕食しやすいと思われた小型の貝を特に選択することもなく、50mm、60mmのトリガイをも捕食した（Table 3）。また、腕長21cmと28mmのトリガイに対して腕長7cmと11cmのヒトデを用いた捕食実験では、いずれの試験でもその捕食個体数は0.2個で、トリガイの大きさの差はないものと思われた。

腕長36〜39mmのトリガイに対して腕長6〜11cmのヒトデを使った5、8、9の捕食実験では、ヒトデ一日あたりの捕食個体数は0.3〜0.5個（平均0.4個）であったり。

（4）モジヒトデのトリガイ捕食

調査（C）と（D）で採取した腕長6cmのモジヒトデ
の消化管内からは、長さ 10 mm のトリガイが認められ、3 種のヒトデ類の中で最も小型の本種は飼具を捕食する傾向にあるものと推察された。

腕長 6 cm のモジマが使った捕食試験では、その対象として腕長 16 mm から 43 mm の比較的小型のトリガイを用いた。Table 3 に示すように、モジマは腕長 16 mm のトリガイ種苗のみを捕食した。

<table>
<thead>
<tr>
<th>Predator</th>
<th>Duration</th>
<th>Stocked cockle</th>
<th>No. of cockle fed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Arm length (cm)</td>
<td>Numbers</td>
<td>Date</td>
</tr>
<tr>
<td>L. quinaria</td>
<td>11</td>
<td>1</td>
<td>1–4 Aug. 1990</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>4–7 Aug. 1990</td>
<td>3</td>
</tr>
<tr>
<td>A. amurensis</td>
<td>11</td>
<td>1</td>
<td>2–11 May 1990</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>23 July–1 Aug. 1990</td>
<td>9</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>10–15 Aug. 1990</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>16–28 Aug. 1990</td>
<td>12</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>14–19 Sep. 1990</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>14–19 Sep. 1990</td>
<td>5</td>
</tr>
<tr>
<td>6–11</td>
<td>4</td>
<td>24–29 May 1989</td>
<td>5</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>4–7 Aug. 1990</td>
<td>3</td>
</tr>
<tr>
<td>6–11</td>
<td>2</td>
<td>1–11 Sep. 1989</td>
<td>10</td>
</tr>
<tr>
<td>A. scoparius</td>
<td>6</td>
<td>1</td>
<td>20–24 May 1989</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>24–31 July 1989</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>23 Apr.–2 May 1990</td>
<td>9</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>24 Apr.–2 May 1990</td>
<td>9</td>
</tr>
</tbody>
</table>
食した。モミジガイ類の他の亜に対する捕食についての報告をみても（藤本, 1953; 土肥, 1974）, 殻長 16 mm 以上のものを捕食した例は少ない。モミジガイ類の場合, 普段がヒトデのように吸盤を形成していないため, スナヒトデと同様, 傾斜をよく呑む。そのため, 口径より大きい種を捕食することが出来ないものと考えられる。したがって, モミジガイによる捕食減耗に関しては, トリガイ種類の適正放流サイズは殻長 16 mm 以上と推察される。

以上の推計結果を整理すると, ヒトデ類 3 種による捕食減耗の少ないトリガイ種類のサイズは殻長 50 mm 以上であると推察される。

次に, ヒトデ類が殻長 40 mm 前後のトリガイ種類にあたる捕食圧の年間変化について検討する。ここは便宜的に, 捕食圧と, 调査 (B) によるトリガイ類の月別出現尾数と捕食数値から明らかに示された各ヒトデ類が一日に捕食する殻長 40 mm 前後のトリガイ種類個体数の積と考える。ただし, ヒトデ類の生活史が殻長 20 mm 前後までの発達段階を種類生産と期を含むものとして確立しているため, ここでは, 殻長 16 mm 以上の種類を捕食しなかったモミジガイは除き, スナヒトデとヒトデの捕食圧について検討する。

スナヒトデの一隻あたり入処数は Fig. 5 に示したように 7 月を最高に (6.7尾), 5～9 月が多く, それらスナヒトデの殻長 38 mm の種類捕食個体数は一日あたり 1 個である。したがって, スナヒトデの捕食圧の年間変化, 5～9 月の間は 3.6～6.7, 10 月～翌年 3 月のそれは 0.6～1.7 の範囲で推移したと推定した。

ヒトデは 8 月を最高に (一隻あたり 5.6尾), 5～8 月に多く入処し (月平均 49.5尾), 7 月の間において殻長 36～39 mm の種類の捕食個体数は一日あたり平均 0.4 倍であった。したがって, この期間のヒトデの捕食圧は 1.9～2.2, 9 月以降では 0.1以下で推移したと計算できた。

両種の捕食圧を加えた殻長 40 mm 前後のトリガイ種類に対する捕食圧の推移を Fig. 8 に示した。同図によれば, 宮津湾における殻長 40 mm 前後のトリガイ種類に対するヒトデ類の捕食圧は 5 月 (捕食数 4.1) 9 月 (捕食圧 5.8), 特に 7 月 (捕食圧 8.5) を 8 月 (捕食数 7.7) が高いと考えられる。したがって, 殻長 40 mm 前後のトリガイ種類の放流時期としては捕食圧が高く考えられる 8 月からの捕食圧が低い時期が適当であろうと判断される。なお, 5～9 月の期間の平均捕食圧は 6.4, 10 月～翌年 3 月のそれは 0.8である。

最後に, ヒトデ類の分布域から判断されるトリガイ種類の放流適地について検討する。この場合も, 前述した理由から, モミジガイは除外して検討する。スナヒトデとヒトデが多く分布する海域は調査 (A) から, 宮津湾の湾口域と漁業部域と推察される。したがって, これらの海域はトリガイ種類の放流場所としては避ける必要がある。ただし, 放流適地については, 他の要素, 例えば, 種類の成長面からの適度判断やヒトデ類の移動についても考慮されなければならない。特に, ヒトデの移動については, ヒトデの移動が一方向に 10～40 cm (有馬, 1973) の 11～12 cm (高見ほか, 1977) と早いか, 鰓に対する営巣行動が活発であるアカギ放流の後尾部の分布密度が放流前の 30 倍と見られる魚類のほどどの捕食した（高見ほか, 1981）との報告がある。ヒトデの営巣行動は放流適地を判断するうえで非常に重要な今後の課題である。

以上, トリガイ種類を捕食するヒトデ類のうち, 宮津湾に分布するスナヒトデ, ヒトデ, モミジガイは分布濃度とトリガイ種類捕食実態からトリガイ種類放流の今後のあり方について検討してきた。その結果, 種類の放流サイズは殻長 50 mm 以上が望ましいこと, 殻長 40 mm 前後のトリガイ種類の放流時期としてはスナヒトデとヒトデの捕食圧が高い 7～8 月を避け, 10 月以後を適当であること, ヒトデの移動という問題は別のトリガイ種類の放流場所としては宮津湾の湾口域と漁業部域を避けることが望ましいことを提唱する。

トリガイ種類を捕食する生物はここでとりあげた種以外にも, 殻長 66 mm の種類を捕食したイシガニ, Charybdis japonica, 殻長 16 mm の種類を捕食したシャコ, Squilla mantis, 殻長 35 mm の種類を捕食したマグサ, Octopus vulgaris, 殻長 25 mm の種類を捕食したクロダイ, Acanthopagrus schlegeli などがある (未発表)。したがって, これらの分布実態を捕食実態も今後検討される必要があるが,}

![Fig. 8. Monthly changes in index of predatory intensity, which is given as follows; (catch of L. quinaria and A. amarumis per haul) × (number of cockles having about 4 cm shell length fed with both the starfishes in a given time).](image-url)
本報での検討結果はスナヒトデとヒトデを積極的に駆除することとあわせ、今後のトリガイ種苗放流の実施にあたって、重要な情報を提供できたものと思う。

本報は過去に海洋センターが実施した諸調査結果も活用している。それらの調査に当たわれた各位に敬意を表する。

文献
有馬亀二．1973a．ホタテガイ漁場の漁場造成について．放流苗の移動とヒトデ類の駆除．北水試月報．30(1):9-24．
有馬亀二．1973b．石灰等によるヒトデ類の駆除について．北水試月報．30(11):1-13．
有馬亀二・浜谷進司・宮川洋一．1972．ヒトデ類の二枚貝捕食行動について．北水試研報．14:63-69．
土肥昭夫．1974．ヒトデ（Genus Astreopeten）の摘卵生態（予報）1．キサザブ、Ambisian castanum（KREIBER）、ヒトデに対する避難行動．ペプトス研会誌．(7/8):31-42．
藤本武．1953．鹿島響有用貝類の増殖に関する基礎研究一IV．鹿島響産ヒラモミジガイ、Astreopeten laterispinosus Meizener の食性について．昭和28年度茨城水試報．122-127．
向井宏．1981．小田和浩におけるヒトデ類の分布と生活様式．ペプトス研会誌．21(22):15-27．
中村協夫・岩本哲二・野村茂男・高見東洋・高見・三上・井上・高見．1976．アカガイの増殖に関する研究．山口内海水試験昭和55年度指定調査研究総合助成事業報告書．1-26．
相良善一郎．1975．東京湾におけるヒトデの異常発生一I．ペプトス研会誌．9(10):41-45．
高見東洋・岩本哲二・三村達夫・井上・渡辺．1977．アカガイの増殖に関する研究．山口内海水試験昭和55年度指定調査研究総合助成事業報告書．1-30．
高見東洋・井上・渡辺・岩本哲二・桃山和夫・中村達夫・吉岡貞範．1981．アカガイの増殖に関する研究．山口内海水試験昭和55年度指定調査研究総合助成事業報告書．1-21．
高見東洋・河本良彦．1988．ミルクガイの増殖に関する研究一V．カプセルを用いた種苗放流について．山口内海水試報．1-10．
内野義・辻秀二・道家秀生・西矢・野村秀之助．1990．トリガイ種苗の効果による捕食と捕食種（予報）．京都海洋センター研報．13:17-20．

Synopsis
On Starfishes Predation to Cockle, Fulvia mutica, and its Cultural Fisheries in Miyazu Bay
Ken Uchino, Syuji Tuji, Akio Douke,
Masasi Itani and Hidenosuke Funada

This paper deals with the starfishes predation to cockle, Fulvia mutica, in consideration of its cultural fisheries in the Miyazu Bay. Basing on the catch data of starfishes and cockles collected by shell-beam trawlings on every opportunity durint the period from 1981 to 1990, it was found that Luidia quinaria (8-11 cm arm length) were commonly caught from May to September, Asterias amurensis (5-8 cm arm length) from May to August and Astreopeten scoparius (4-6 cm arm length) through all months, respectively. The size of cockles observed in the stomach of L. quinaria of 24-46 cm arm length was about 4 cm in the length and the shell length fed with starfish was approximately proportional to the arm length of starfish.

From the experimental predations in tank, it was observed that A. amurensis and A. scoparius fed on cockles of less than 6 cm shell length and of less than 1.6 cm shell length, respectively. Considering the amount of each starfish catch per haul by month, L. quinaria and A. amurensis were predacious to cockles in July and August.

In order to effective recruitment of juvenile cockles (hatchery reared) to stock in the Miyazu Bay, it was suggested that rather large cockles (5 cm shell length) should be released after October.