トリガイの人工採苗に関する研究—Ⅰ
産卵誘発と初期発生

西 広 富 夫

Studies on the Artificial Production of Cockle—Ⅰ
Inducing Spawning and the Early Development

Tomio Nishihiro*

トリガイ *Fusioa mutica* (REEVE) は本州から九州の内湾の細砂泥底に生息する二枚貝で、京都府においては、宮津湾、舞鶴湾、栗田湾に生息し、桁網で漁獲され、内湾漁業の重要な対象種の一つとなっている。昭和50年には約150トンが漁獲されたが、その後減少し、昭和54年には約10トンとなった。本種は発生量の年変動が大きく、その資源の維持増大のための対策が望まれている。

本種の人工採苗についての研究は、寺島、松岡・田中・生田、田中、福田らの報告があるが、大量に種苗を得るに至っていない。著者は、大量のトリガイ稚貝を室内水槽内で安定的に採苗することを目ざして本試験を実施した。

人工採苗をおこなう際に対象をその間に問題となるのは、大量の受精卵を安定的に得ることである。そのためには効果的な産卵誘発方法の確立をはかる必要がある。良質の受精卵を得るためには充分成熟した母貝を使用しなければならないが、トリガイの場合は生殖巣の観察を外部から判断することが困難であるため、従来の温度刺激法では、いわゆる“流産”ともに、産出された卵が異常発生卵となることがしばしば見られた。著者は、アワビ等の産卵誘発方法として使用されている紫外線照射海水法を、本種の誘発方法として使用することにより、誘発の反応率が高まり、得られた卵のふ化も良好であることを確認した。また、同方法により秋期、春期の二期において産卵をおこなない、大量の受精卵を安定的に得ることができた。そして得られた卵の発生経過を観察するとともに、産卵誘発の結果から本府におけるトリガイの産卵盛期を推定したので報告する。

材料および方法

実験Ⅰ

産卵誘発方法として温度反復刺激法と紫外線照射海水法を用いた。

供試母貝は昭和52年9月19日に宮津湾で採捕した殻長89〜109mm（平均殻長89mm）、重量185

* Kyoto Institute of Oceanic and Fishery Science, Miyazu, Kyoto, Japan.
〜355 μ（平均重量298 μ）の2〜3年目51個を使用した。産卵誘発までの期間は、砂を敷いた0.5トンコンクリート水槽2面に収容し、流水飼育をおこなった。産卵誘発には30μ容パラライト水槽を使用した。

温度反復刺激法は、産卵水槽内にガラスビーカー（100W）を2本投入し、温度を自然海水より約5℃上昇させ、その後急激に自然海水と交換し、水温を降下させた。これを産卵がおこなわれるまで4〜5回繰り返した。産卵水槽内は風通気をよく心掛ける、水温の均一化をはかった。放卵を始めた個体は、別に用意した自然海水を入れた30μ容パラライト水槽に収容し、引き続き放卵をおこなわせ、精子懸濁液を適量添加し、受精させた。

紫外線照射海水法は、紫外線流水殺菌装置（スチントロン、基準水温10℃/時、150W）を2基連結し、0.5トン/時の中流量で産卵水槽にかけ流した。産卵が始まるのを確認後は海水の注入を止め、放卵が終了するのを待った。得られた卵は常法に従い3〜4回洗浄をおこない、30μ容パラライト水槽に収容してふ化を行った。

実験II
紫外線照射海水法により昭和54年10月4日から昭和55年5月21日を含む間に採卵をおこなった。秋期採卵に用いた母蟹は昭和54年9月12日〜17日に宮津湾で採捕した84〜106 mm（平均殻長96 mm）、重量177〜328 μ（平均重量239 μ）のものが49個である。
春期採卵に用いた母蟹は、昭和55年4月25日に舞鶴湾で採捕した79〜93 mm（平均殻長87mm）、重量166〜230 μ（平均重量197 μ）のものが25個体である。誘発方法は前項の紫外線照射海水法と同様である。
得られた受精卵を30μ容パラライト水槽に収容し、適時発生経過を検観した。観察をおこなったのは昭和55年5月7日 昭和54年11月21日、同10月22日、同10月8日に採卵したものである。

結果
実験I
温度反復刺激法と紫外線照射海水法による産卵誘発をおこない、その結果を表1に示した。

<table>
<thead>
<tr>
<th>年月日</th>
<th>反応時温 (℃)</th>
<th>反応時反態</th>
<th>放卵個数</th>
<th>放卵個数</th>
<th>産卵数</th>
<th>化生数 (×10^4)</th>
<th>全体数</th>
<th>化生数 (×10^4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>52.10.3</td>
<td>28.2</td>
<td>1/16</td>
<td>94</td>
<td>0</td>
<td>10</td>
<td>160</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>10.6</td>
<td>28.3</td>
<td>3/16</td>
<td>138</td>
<td>0</td>
<td>2</td>
<td>488</td>
<td>264</td>
<td></td>
</tr>
<tr>
<td>10.7</td>
<td>28.2</td>
<td>4/16</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>264</td>
<td>157</td>
<td></td>
</tr>
<tr>
<td>10.14</td>
<td>28.0</td>
<td>3/5</td>
<td>150</td>
<td>0</td>
<td>2</td>
<td>190</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>10.30</td>
<td>27.9</td>
<td>1/15</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>253</td>
<td>94</td>
<td></td>
</tr>
</tbody>
</table>

*異常発生のため正常化生数得られず
実験は昭和52年10月3日から10月30日までに5回おこなった。

温度反復刺激法では、5回のうち放精は毎回見られたが、放卵は3回であった。10月3日に得られた卵は「流産」となり、卵が塊状に放出され、すべて異常発生卵となり、D型幼生にまで至らなかった。温度反復刺激法による放精誘発率は7〜50％（平均25％）であり、放卵誘発率は0〜13％（平均7％）であった。放卵個体1個当たりの産卵数は69〜150×10⁴粒（平均96×10⁴粒）であり、平均孵化率は17.8％であった。

紫外線照射海水法では毎回放精放卵が見られ、得られた受精卵の孵化も良好であった。放精誘発率は20〜70％（平均52％）であり、放卵誘発率は10〜20％（平均14％）であった。放卵個体1個当たりの産卵数は80〜264×10⁴粒（平均193×10⁴粒）であり、平均孵化率は40.6％であった。放精誘発率、放卵誘発率、1個当たりの産卵数、孵化率の全項目において紫外線照射海水法が温度反復刺激法より高い値となった。

<table>
<thead>
<tr>
<th>誘発年月日</th>
<th>供試卵数</th>
<th>放卵数</th>
<th>反応数</th>
<th>反応率</th>
<th>放卵数</th>
<th>得られたりの反応数</th>
<th>水温（℃）</th>
</tr>
</thead>
<tbody>
<tr>
<td>54.10.4</td>
<td>22</td>
<td>15</td>
<td>68</td>
<td>2</td>
<td>9</td>
<td>966</td>
<td>483</td>
</tr>
<tr>
<td>10.5</td>
<td>20</td>
<td>12</td>
<td>60</td>
<td>2</td>
<td>10</td>
<td>304</td>
<td>152</td>
</tr>
<tr>
<td>10.8</td>
<td>40</td>
<td>7</td>
<td>18</td>
<td>4</td>
<td>10</td>
<td>1,054</td>
<td>264</td>
</tr>
<tr>
<td>10.11</td>
<td>40</td>
<td>12</td>
<td>30</td>
<td>1</td>
<td>3</td>
<td>316</td>
<td>316</td>
</tr>
<tr>
<td>10.12</td>
<td>39</td>
<td>26</td>
<td>67</td>
<td>4</td>
<td>10</td>
<td>1,010</td>
<td>253</td>
</tr>
<tr>
<td>10.17</td>
<td>31</td>
<td>13</td>
<td>42</td>
<td>9</td>
<td>29</td>
<td>1,326</td>
<td>147</td>
</tr>
<tr>
<td>10.22</td>
<td>28</td>
<td>16</td>
<td>57</td>
<td>6</td>
<td>21</td>
<td>746</td>
<td>124</td>
</tr>
<tr>
<td>10.29</td>
<td>27</td>
<td>16</td>
<td>59</td>
<td>4</td>
<td>15</td>
<td>732</td>
<td>181</td>
</tr>
<tr>
<td>11.1</td>
<td>25</td>
<td>15</td>
<td>60</td>
<td>5</td>
<td>20</td>
<td>647</td>
<td>129</td>
</tr>
<tr>
<td>11.21</td>
<td>22</td>
<td>7</td>
<td>32</td>
<td>3</td>
<td>14</td>
<td>489</td>
<td>163</td>
</tr>
<tr>
<td>55.5.6</td>
<td>10</td>
<td>4</td>
<td>40</td>
<td>1</td>
<td>10</td>
<td>846</td>
<td>846</td>
</tr>
<tr>
<td>5.7</td>
<td>25</td>
<td>8</td>
<td>32</td>
<td>4</td>
<td>16</td>
<td>886</td>
<td>209</td>
</tr>
<tr>
<td>5.21</td>
<td>5</td>
<td>5</td>
<td>100</td>
<td>1</td>
<td>20</td>
<td>115</td>
<td>115</td>
</tr>
<tr>
<td>合計</td>
<td>9,379</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>平均</td>
<td>51</td>
<td>14</td>
<td>204</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

紫外線照射海水法による産卵誘発の結果を表2に示した。

産卵誘発は13回おこなわれた。毎回放精放卵が見られた。放精放卵は以下のようにおこなわれた。誘發開始から早いものは21分後に放精が始まったが、大部分は1時間から2時間の間に放精された。放卵は約2時間後に始まり場合が多く、少量しか放卵をしなかった個体は、後日再び誘発をおこなうと放卵をするのが見られた。しかし、一度に多数の卵を産出した個体は、その後の誘発には反応しなかった。放精は同一個体を何回も誘発すると、前回より早い時間で反応する傾向が見られた。産卵は10月4日から11月21日までと5月6日から5月21日までの間に見られ、この間に得られた総卵数は9,379×10⁴粒であった。放精誘発率は18〜100％（平均51％）で、放卵誘発率は3〜29％（平均14％）であった。1個当たりの産卵数は最大115×10⁴粒、最大846×10⁴粒（平均204×10⁴粒）であった。

得られた卵の発生を観察した。水温別に各発生段階に達するまでの発生時間は表3に示すとおりであった。水温23.4℃における卵の状況で説明すると、卵は放出後には不規則な卵巣形をしているが、次第に丸くなり、約6日後には円形となった。受精卵は白色の卵径約65
表3 トリガイ初期発生経過

<table>
<thead>
<tr>
<th>発生経過</th>
<th>水温（℃）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>13.6</td>
</tr>
<tr>
<td>活動形から内形に至る</td>
<td>10分</td>
</tr>
<tr>
<td>第1極体放出</td>
<td>1時間</td>
</tr>
<tr>
<td>第2極体放出</td>
<td>50分</td>
</tr>
<tr>
<td>2細胞期</td>
<td>2時間</td>
</tr>
<tr>
<td>4細胞期</td>
<td>3時間</td>
</tr>
<tr>
<td>桑実期</td>
<td>10時間</td>
</tr>
<tr>
<td>胚胎期</td>
<td>23時間</td>
</tr>
<tr>
<td>盤輪子幼生</td>
<td>48時間</td>
</tr>
<tr>
<td>D型幼生</td>
<td>72時間</td>
</tr>
</tbody>
</table>

考察

1) 産卵誘発方法の比較

一般に三枚貝の産卵誘発法には温度刺激法が多く用いられ、誘発成功率も比較的高い方法であると考えられている。しかし、誘発方法の操作性が繁雑であり、水温変化による異常水域がしばしば発生するなど問題があった。紫外線照射海水法はアワビ類、ホタテガイ、ヒオウギガイ等で誘発効果が明らかにされたが、種類によっては全く反応しないものもある。トリガイの場合、この方法に反応し、しかも温度反復刺激法に比較して放精産卵誘発率、1個当たりの放卵数、得られた卵のふ化率において全て高い値を示した。この方法によって得られた幼生は、種苗生産の材料として使用され健全な発育を示した。以上のことから紫外線照射海水法は、トリガイの産卵誘発には非常に有効な方法であると考えられる。

2) 産卵期について

本種の産卵期については別に、周防灘において2月～6月、8月～11月の2期で、その盛期は4月～5月、9月～10月であると報告している。今回はの産卵誘発の実験の結果に基づいて産卵盛期を考察すると、京都府においては10月～11月と5月の2期に盛期があり、周防灘におけるものとほぼ一致する。春期は水温が14～15℃に上昇する時期であり、秋期は24～18℃に下降する時期であった。春期採卵に用いた母貝は、採捕時に生殖巣は未成熟でなかったが、秋期採卵に用いた母貝は全く未熟の状態であった。これは産卵誘発を起こさぬまでの約20日にわたって、室内飼育水槽において急速に成熟し、産卵に至ったものと思われれる。

要約

1. トリガイの産卵誘発方法として温度反復刺激法と紫外線照射海水法の比較試験をこない、放精誘発率、放卵誘発率、1個当たりの放卵数、得られた卵のふ化率において全て紫外線照射海水法が優れていた。
2. 紫外線照射海水法による産卵誘発を昭和54年10月4日から昭和55年5月21日までの間に13回おこない、9.379 \times 10^4 粒の受精卵を得た。秋期、春期ともに安定的に産卵をおこなうことができた。
3. 産卵誘発の結果から京都府におけるトリガイの産卵盛期は、10月〜11月と5月の2期であると考えられる。
4. トリガイの卵は水温 23.4℃においては、放卵直後は不規則な卵殻形をしているもののが、約6分で円形となった。受精卵は白色の卵殻約65μの弱沈性卵であった。1時間で2細胞期、3時間で桑実期、5時間30分で胞胚期となった。21時間後には殻長98μ、殻長76μのD型幼生となった。水温が低いと発生速度は遅く、13.6℃では胞胚期となるのに22時間要した。

文 献
1) 寺島 朴：アクアギーとトリガイの人工採苗，昭和42年度岡山水試事報，203〜205 (1968)。
2) 松岡祐輔・田中俊次・生田哲郎：トリガイに関する種苗生産技術研究，京都府水試業績，31，13〜27 (1968)。
3) 田中弥太郎：トリガイの発生，東水研業稲集 "山の水 "，4，44 (1969)。
4) 垣田正勝：トリガイ幼生と稚貝の飼育について (予報)，広島水試研報，46〜53 (1977)。
5) 管野 尚：温度の反復刺激による貝類の産卵誘発，東北水研報，20，114〜120 (1962)。
6) 菊地省吾・浮 永久：アワビ属の採卵技術に関する研究 第2報 紫外線照射海水の産卵誘発効果，東北水研報，33，79〜86 (1974)。
7) 浮 永久・菊地省吾：紫外線照射海水のホタテガイ Phalium yessoensis (Jay)に対する産卵誘発効果，東北水研報，34，87〜92 (1974)。
8) 垣原 宏・武田年秋：ヒオウギガイの種苗生産ーII 1977年の産卵試験ならびに紫外線照射海水による産卵誘発，大分水試調研報，10，67〜72 (1978)。
9) 西広富夫：トリガイの人工採苗と放流稚貝の成長について，栽培技研，10 (1981)。投稿中
10) 井上 泰：トリガイの生態学的研究ーII 産卵期について，日水誌，2 (1)，27〜29 (1955)。

- 17 -