測定の高効率化に伴う測定精度に関する研究

髙島崚志*

当センターで所有している高精度CNC三次元測定機の測定における高効率化に伴う測定精度 に関する研究を行ったので、その結果を報告する。

1 はじめに

今回の研究では、CNC三次元測定機を用いた測定 における測定点数及び配置(以下、測定点配置)の選 択基準について、測定精度を担保しつつ、高効率化 (測定時間の短縮)が可能な基準を提案することを目的 とした。

2 試験内容

2.1 CNC 三次元測定機の仕様

今回使用したCNC三次元測定機の仕様を表 1、外 観を図1に示す。

機器名	高精度CNC三次元測定機				
製造メーカ	(株)ミツトヨ				
型式	STRATO-Apex9166				
モデルタイプ	門移動型				
測定範囲[mm]	X900 Y1600 Z600				
最大許容長さ測定誤差	0.9+2.51/1000				
[µ m]	1:測定長さ[mm]				
スタイラス	ルビー球				
先端材質	φ 4-40				

表1 CNC三次元測定機 仕様

図1 装置外観 (高精度CNC三次元測定機)

2.2 試験方法

本実験では丹後地域企業の測定点配置の選択基準 について聞き取り調査を行い、それを基に設定した測 定点配置を従来方法として、測定精度が担保できる高 効率化可能な測定点配置の新規提案を行う。

測定対象物は 3Dプリンタから出力した測定ワーク (図 2)及び基準器(オプチカルフラット及びリングゲー ジ)(図 3)とし、その測定要素(円、面、円筒)について 測定精度の評価・比較をすることで本研究目的を達成 する測定点配置の選択基準について検討を行った。測 定数値は、各要素を 3 回 NC 測定し、結果の平均値を 評価する。

測定ワークの固定方法は、図 4 に示す。側面を突き 当てて上から固定する。座標系は図 5-1 及び図 5-2 の 図面において、Z=0 面(データムA面から 20mm の面) の法線方向、Y=0面(データムC面)とZ=0面との交線の 方向をそれぞれZ軸方向、X軸方向とし、X=0 面(デー タムB面)とZ=0 面、Y=0 面の交点を原点に設定する。

図2 測定ワーク(3Dプリンタ造形物)

オプチカルフラット(\$60)

リングゲージ(左: φ40 右: φ100)

3 試験結果及び考察

企業聞き取り調査(6社)を基に設定した測定点配置 を表2に示す。通し番号1から6まで採番し、それぞれ について測定を行った。測定ワークの測定結果を図6, 図7に示す。又基準器の測定結果を図8に示す。グラ フの縦軸は測定値[mm]、横軸は通し番号とする。

測定結果の比較評価については、各測定点配置間 での測定値の差の比較を行い、測定点配置の提案に 向けた内容の検討を行った。

まず、測定ワークの直径値については、直径値の差 はおおよそ1桁µmしか誤差がない。幾何公差につい てはほとんどの要素で数十µmの差があった。

次に、基準器の直径値及び幾何公差については、 最大で 0.001mm(機械誤差以下)の差しかないため、ど の測定点配置でも精度を満たす結果となった。

よって測定ワークの直径、寸法及び基準器の全測定 要素においては、円測定及び面測定では4点、円筒測 定では8点を均等配置にて測定が可能であることが分 かった。測定ワークの幾何公差においては、実際の形 状を測定する必要があることから、測定精度を担保する ため、上記点数の2倍以上の点数で測定することが必 要となる。

図3 基準器

図4 固定方法

〇座標系

図 5-2 測定要素

配置
通知
剿
2
表

					ul Zr	表2 測点	三点配置						
測定過	玉玉	-		2		c		4		Q		9	
		測定点数	配置	測定点数	副置	測定点数	副置	測定点数	配置	測定点数	配置	測定点数	配置
国	X = 0 面	20	端から5mm	9	端から5mm	16	等間隔	8	等間隔	4	端 4 点	4	端 4 点
	Υ = 0 团	20	11	8	11	8	4 列) × 2	12	//	4	Ŋ	4	端 4 点
	Z = 0	20	11	8	11	8	'n	8	//	4	Ŋ	6	3×3
	平面1	15	"	9	11	2	真ん中含む	6	//	4	ľ	2	4点+真ん中
	平面2	15	11	4	11	8	4 列 ×2	13	円の周り多	4	ll I	8	4点+真ん中
	斜面	10	11	4	11	9	ll I	10	5点×2	4	ll I	5	4点+真ん中
E	円1	L	等間隔	4	60。ずつ	9	に 美。09	8	8分割	4	90度間隔	8	45度間隔
	円 2	7	等間隔	4	//	9	ll I	8	//	4	ll I	8	45度間隔
	半日	7	等間隔	4	11	4	ll I	2	等間隔	4	Ŋ	2	5 等分
田筒	円筒1	30	4断面	8	90°ずつ×2	8	90°ずつ×2	8	90° ずつ×2	8	円4点×2	24	45度間隔
	円筒2	30	"	8	11	8	ľ	8	//	8	Ŋ	24	45度間隔
	円筒3	30	11	8	//	8	ll I	16	8分割×2	∞	ll I	24	45度間隔
	円筒4	30	11	8	11	8	ll I	8	//	4	円と同様	24	45度間隔
「」」	[器]												
測定引	奏												
围土	オプチカルフラット	20	等間隔	16	ø50、ø30	10	φ20、φ60	13	中心から3点	4	四角	7	60度間隔+中心
Æ	リングゲージ(φ40)	7	360°を7等分	8	360°を8分割	9	60° ずつ	∞	8分割	4	80。間隔	∞	45度間隔
	リングゲージ(φ100)	7	360°を7等分	8	360°を8分割	∞	8分割	16	16分割	4	"	16	22.5度間隔

[mm]	測定	ワーク	ク (円	1直径	隆値)	
24.998	•					設計値
24.996		•	•	-	-	•
24.994						
24.992						
24.990	1	2	3	4	5	6 [番]

図 6-1 円1直径値

図 6-2 円2直径値

図 6-3 半円直径値

図 6-4 円筒1直径値

図 6-5 円筒2直径値

図 6-6 円筒3直径値

図 6-7 円筒4直径値

○測定結果(測定ワーク):幾何公差(図 7-1~図 7-9)

図 7-2 円2真円度

図 7-3 半円真円度

図 7-4 円筒1円筒度

図 7-5 円筒2円筒度

図 7-6 円筒3円筒度

図 7-7 円筒4円筒度

図 7-9 直角度

〇測定結果(基準器):直径及び幾何公差

(図 8-1~図 8-5)

図 8-2 基準器直径値

図 8-4 基準器直径値

図 8-5 基準器真円度

4 まとめ

本研究結果を表3にまとめた。表3では測定点配置 の従来方法と新規提案における測定時間及び測定精 度を示す。新規提案により測定精度を担保しつつ、測 定時間の約50%~75%短縮が可能となった。

今回の研究では、これまで対象物の測定形状に対し て一般的な測定基準がなく、測定者が独自で設定して いた測定点配置の選択基準について、測定精度を担 保できる基準(均等配置による最小点数)を提案でき た。

特に基準器の測定については、当センターや企業 の測定担当者で引き継がれてきた従来方法と比較して 時間短縮が可能となり、精度についても担保されてい る。

実際に測定する測定物においても、時間の短縮が見 込まれ、高効率化が可能と想定される。

基準器 測定対象物 リングゲージ(φ40) リングゲージ(φ100) オプチカルフラット 測定要素 面 円 円 方法 従来 新規提案 従来 新規提案 従来 新規提案 点数 20 4 8 4 16 4 測定時間 60秒 15秒 36秒 20秒 80秒 30秒 測定精度 幾何公差 (平面度) 直径値 直径値 40.002mm 40.001mm 100.005mm 100.005mm 0.001mm 0.001mm 幾何公差(真円度) 幾何公差 (真円度) 0.000mm 0.001mm 0.000mm 0.0001 ※従来方法には今回聞き取り調査を行い、設定した測定点配置において最も多い点数のものを設定 ※測定機のマシン速度は100mm/sで一律設定 測定ワーク 測定対象物 3Dプリンタ造形物 測定要素 面、円、円筒 新規提案 方法 従来 面4、円4、円筒8 点数 面20、円7、円筒30 5分2秒※1 測定時間 16分30秒 8分38秒※2 測定精度 直径値(円、円筒):最大差が1桁µm以下※3 幾何公差(真円度):最大差が0.03mm ※1幾何公差考慮なし 幾何公差(平面度) :最大差0.03mm ※2幾何公差考慮あり 幾何公差(直角度):最大差が0.01mm ※3 半円を除く

表3 研究結果のまとめ